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Abstract

Recent advances in multi-agent reinforcement learning (MARL) provide a variety
of tools that support the ability of agents to adapt to unexpected changes in their
environment, and to operate successfully given their environment’s dynamic nature
(which may be intensified by the presence of other agents). In this work, we
highlight the relationship between a group’s ability to collaborate effectively and the
group’s resilience, which we measure as the group’s ability to adapt to perturbations
in the environment. To promote resilience, we suggest facilitating collaboration
via a novel confusion-based communication protocol according to which agents
broadcast observations that are misaligned with their previous experiences. We
allow decisions regarding the width and frequency of messages to be learned
autonomously by agents, which are incentivized to reduce confusion. We present
empirical evaluation of our approach in a variety of MARL settings.

1 Introduction

Reinforcement Learning (RL) agents are typically required to operate in dynamic environments,
and must develop an ability to quickly adapt to unexpected perturbations in those environments.
Promoting this ability is challenging, even in single-agent settings [13]. For a group of agents this
becomes even more of a challenge; in addition to the dynamic nature of the environment, the agents
need to deal with high variance caused by changes in the behavior of other agents [16, 22, 9].

Our objective in this work is to highlight the relationship between a group’s ability to collaborate
effectively and the group’s resilience, which we measure as the group’s ability to adapt to perturbations
in the environment. Contrary to investigations of transfer learning [24, 8] or curriculum learning [15],
we do not have a stationary target domain in which the group of agents is going to be deployed, nor
do we have a training phase dedicated to preparing agents for the deployment environment. Instead,
we aim to equip a group with the ability to adapt to unexpected changes that can occur at random
times.

Recent literature is rich with a variety of different definitions of resilience and robustness, for both
single and multi-agent settings [23, 21, 14]. That research usually focuses on resilience in the
presence of deliberate adversary attacks upon one or many agents in the system [18]. Instead of
considering adversarial settings, we measure group resilience as the agents’ performance in the
presence of unexpected perturbations.
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Figure 1: An illustration of a multi-agent taxi domain. Perturbations in the bottom image are depicted
as solid lines that represent non-traversable walls.

To support collaboration and demonstrate its effect on group resilience, we introduce a communication
protocol that defines the information that each agent shares with the group. Recent work demonstrates
how communication in multi-agent reinforcement learning (MARL) settings allows a group to learn
and operate efficiently in complex but stationary environments [6, 4]. To promote a group’s ability
to adapt to a randomly perturbed environment, we present a novel confusion-based communication
protocol, that requires an agent to broadcast its current observations that are least aligned with its
current model of the environment. We show that this effect can also happen through emergent
communication, by incentivizing agents to reduce confusion.

Example 1 Consider Figure 1, which depicts a multi-agent variation of the Taxi domain [2]. In
this setting, taxis are associated with one operator, but each taxi receives a direct payment from
each passenger when it drops her off at her destination. In addition to the taxis, we posit a designer,
representing the taxis’ operator, who aims to maximize the group’s total revenue.

The designer monitors the taxis’ performance (revenue), and notices that taxis sometimes deviate from
their usual routes. This may happen, for example, due to road construction, road congestion, or other
reasons. In the attempt to maximize the group’s performance despite these changes, and with the
intention of not overwhelming the communication channel, the designer instructs taxis to broadcast

‘confusing’ experiences to the others, corresponding to actions that have unexpected outcomes. For
example, when a taxi encounters a blocked road, and fails to drive through a street it has driven
through regularly, it will broadcast this unsuccessful attempt to the other taxis. Similarly, the taxi will
broadcast information about a vacant street that is typically busy. This may relieve the effect that
perturbations have on the other taxis and help improve performance.

Our key contributions in this work are threefold. First, we suggest a new measure of group’s resilience
that corresponds to the group’s ability to adapt to unexpected changes. As a second contribution, and
in order to promote resilience, we facilitate collaboration within the group. To support collaboration,
we offer a new confusion-based communication protocol according to which all agents are notified
about notable changes in an agent’s surroundings. We consider both the case where a designer
instructs the group to follow the protocol as well as the case where communication emerges as a
result of incentivizing agents to minimize confusion. Lastly, we offer an empirical evaluation that
demonstrates how agents that operate according to the confusion-based protocol are more resilient
compared to agents that do not.

2 Measuring Group Resilience

We aim to promote the ability of a group of agents to adapt to random perturbations in their
environment. We refer to this ability as resilience, and formally define it below. We will then
suggest promoting group resilience by facilitating collaboration between the agents.

To measure the resilience of a group of agents we take inspiration from the field of multi-agent
robotics. Specifically, the work of [18] that aims to produce a control policy that allows a team of
mobile robots to achieve desired performance in the presence of faults and attacks on individual
members of the group. According to their work, a group of robots achieves resilient consensus if the
cooperative robots’ performance is in some desired range, even in the presence of up to a bounded
number of non-cooperative robots. In essence, we want resilience to mean that if an environment
undergoes an unexpected (but somehow bounded-in-magnitude) perturbation, then agents can still
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achieve a fixed fraction of their original performance. However, we are interested in changes in the
environment, rather than the other agents. That is, we differ from the original definition by implicitly
taking into consideration any kind of change in the observed environment.

Our definition of resilience is with regard to a distance measure δ(M,M
′
) that quantifies the

magnitude of the change between an original MDP M and the modified MDP M
′
. It also relies on

the specification of a utility measure U(M), quantifying the performance of a group of agents in a
given MDP. Given these two measures, we require that a perturbation that results in an environment
that is within a bounded distance K from the original environment, will result in a decrease in
performance by a factor of at most some constant CK .1 We note that a range of subtly different
formal definitions can satisfy this intuitive requirement. We defer a detailed discussion on some
possible options to the appendix, and provide here only the definitions that are relevant to our
experiments. Specifically, our definitions rely on the assumption that a designer might want to
guarantee resilience over some subsetM of perturbed environments within the specified distance.
For example, a taxi station’s manager might be interested in guaranteeing that a group of taxis is
resilient under random road blockages, instead of being resilient to arbitrary perturbations that may
occur.

Definition 1 (Relative to Origin CK-resilience) Given a class of MDPsM, a source MDP M ∈
M, and a bound K ∈ R, we say that a group of agents is universally CK-resilient in M overM if

∀M
′
∈M : δ(M,M

′
) ≤ K =⇒

U(M ′) ≥ CK · U(M)

Resilience overM allows us to choose a setM of environments of interest for which the distance
condition is easily verified. However, this condition still requires that the bound on performance holds
for any M

′ ∈M (under the distance bound), which may be unreasonably strong and impractical in
many cases. Therefore, equipped with a probability distribution (e.g., uniform distribution) Ψ over
M, we further define resilience-in-expectation as follows.

Definition 2 (Relative to Origin CK-resilience in Expectation) Given an MDP M , a distribution
over a class of MDPs Ψ, and a bound K ∈ R, we say that a group of agents is CK-resilient in
expectation in M over Ψ if

E[M ′∼Ψ|δ(M,M ′ )≤K]U(M ′) ≥ CK · U(M)

Our definition above, requires the expected performance of a group to fulfill a performance guarantee,
where the expectation is over a sampled set of MDPs in M within K-distance of M . It is a
known result that polynomially-many samples from Ψ are sufficient to achieve arbitrarily close
approximations of the true expectation, with arbitrarily high probability.2

We note that definitions 1 and 2 compare the performance of the agents in the perturbed environment
against their performance in the original one, without considering its nominal value. This means
that a group that follows a non-efficient policy (e.g., performing a no-op action repeatedly) will have
high resilience. Our suggested measure should therefore be considered in concert with the group’s
measure of utility.

2.1 Perturbations

In this work, we are interested in settings in which we have an initial environment and a set of
perturbations that can occur. In general, a perturbation φ :M 7→ M is a function transforming a
source MDP into a modified MDP. An atomic perturbation is a perturbation that changes only one of
the basic elements of the original MDP. In the following, given an MDP M = 〈S,A,R, P, γ〉 and
perturbation φ, the resulting MDP after applying φ is denoted by Mφ = 〈Sφ, Aφ, Rφ, Pφ, γφ〉.

1Notice that this is similar to the classical ε-δ-definition of the continuity of a function.
2Assume that the utility function U(M ′), considered as a random variable with M ′ drawn from [M

′
∼

Ψ|δ(M,M
′
) ≤ K] as above, is i.i.d. for a random draw of M

′
and has a finite variance σ2. Then it follows

from Chebychev’s inequality that in order to be within ε of the true mean with a probability of at least δ, it is
sufficient to collect at least σ2

ε2·(1−δ)
samples.
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Among the variety of perturbations that may occur, we focus here on three types of atomic per-
turbations. Transition function perturbations modify the distribution over next states for a single
state-action pair. Reward function perturbations modify the reward of a single state-action pair. Initial
state perturbations change the initial state of the MDP (if it is defined).

Definition 3 (Transition Function Perturbation) A perturbation φ is a transition function pertur-
bation if for every MDP M = 〈S,A,R, P, γ〉, Mφ is identical to M except that for a single action
state pair s ∈ S and a ∈ A, Pas [S] 6= Pφas [S].

Definition 4 (Reward Function Perturbation) A perturbation φ is a reward function perturbation
if for every MDP M = 〈S,A,R, P, γ〉, Mφ is identical to M except that for a single action state
pair s ∈ S and a ∈ A, ras 6= rφ

a
s .

Definition 5 (Initial State Perturbation) A perturbation φ is a transition function perturbation if
for every MDP M = 〈S, s0, A,R, P, γ〉, Mφ is identical to M except that s0 6= sφ0 .

Example 1 (continued) In our multi-taxi domain, a road blockage can be modeled as a perturba-
tion comprised of atomic transition function perturbations that reduce to zero the probability of
transitioning to a blocked cell from any adjacent cell. If the destination of a passenger changes, this
can be represented by two atomic perturbations: one that replaces the reward for a dropoff at the
original destination with a negative reward, and one that adds a positive reward for a dropoff at the
new destination.

There are a variety of metrics for measuring the distance between two MDPs [20, 1]. We want the
magnitude of a perturbation to represent the extent by which a perturbed environment is different
from the original one. Intuitively, the bigger the magnitude, the harder it would be for a set of RL
agents to adapt.

A straightforward way to measure the distance between two MDPs is to count the minimal number of
atomic perturbations that transition the original MDP into the transformed one. Another measure is
the one suggested by Song et al. [20], where the distance between two MDPs M and M

′
is calculated

by computing the accumulated distance between every state in M and its corresponding state in
M ′. This definition holds for a setting where the two MDPs are homogeneous, such that there exists
a correspondence (mapping) between the states, action spaces, and reward functions of the par of
MDPs. Given two homogeneous MDPs M and M ′, the distance d(s, s′) between any two states
s ∈ SM and s′ ∈ SM ′ is defined as:

d(s, s′) = max
a∈A
{|ras − r′

a
s′ |+ cTk(d)(Pas [SM ],P′s′

a
[SM ′ ]])}

where ras ,Pas [SM ], r′
a
s′ ,P′

a
s′ [SM ′ ] are the immediate reward and the transition probabilities forM and

M ′ respectively, Tk(d) is the Kantorovich distance [3] between the two probability distributions, and
c ∈ [0, 1] is some hyper-parameter defining the significance of the distance between the distributions.

In our setting, we focus on perturbations Φ that do not change the state space nor the action space, so
Φ(M) and M are homogeneous according to Song et al. [20], and each state s ∈ SM corresponds to
the same state in SΦ(M). We therefore use the above measure to estimate the distance between an
MDP and its perturbed variations in our empirical evaluation.

3 Promoting Group Resilience Via Confusion-Based Communication

Equipped with a measure for group resilience, we now focus on maximizing the resilience of a
group of RL agents. Recent work in MARL suggests various approaches for promoting efficient
collaboration within a group of agents. Such approaches include introducing a communication
protocol [6] or a model of other agents’ policies [10, 17]. The focus in these frameworks is on
promoting collaboration in order to maximize the group’s performance in spite of the dynamic nature
of the environment and the existence of other agents. We suggest promoting collaboration as a way
to promote resilience. We hypothesize that agents that learn to collaborate will adapt more quickly to
changes in their environment.

One way to support collaboration is by allowing agents to communicate, and by formulating communi-
cation protocols for which the messages encode information that is valuable to the learning experience
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of other agents. Communication protocols have been applied to enhance the performance of a group
of RL agents [6, 4]. We offer a new confusion-based communication protocol, according to which
agents broadcast to other agents observations that are not aligned with their previous experiences
in the environment. The motivation for this protocol comes from the Prioritized Experience Replay
(PER [19]). In PER, a DQN agent maintains a memory buffer containing its transitions, and instead
of sampling the memory uniformly for training, the agent samples the memory with “importance
weights”, trying to improve the learning process. We generalize this idea to the multi-agent setting by
instructing the agents to communicate observations or messages with prioritized importance, that is
determined by measuring misalignments between expected and observed rewards.

3.1 Computing Confusion

We measure confusion according to the extent by which the immediate reward observed by an agent
when performing an action in some state is misaligned with its estimated reward. Formally, we
compute the level of confusion using the Q function. Let πp be the policy of agent p, and let sj be
the next state the environment transitioned to after taking action ai in si. The reward r̂i of taking ai
in si is estimated by: r̂i ≈ Qπp

(si, ai)−Qπp
(sj , πp(sj)). The confusion level for a given state and

agent is defined as follows:

Definition 6 (Confusion) Let ri and r̂i be the observed and estimated reward of agent p after taking
action ai = πp(si) in si. The level of confusion of agent p at si after taking action ai, denoted Jsi,ai ,
is defined as:

Jpsi,ai =
|ri − r̂i|
ri

3.2 Confusion-Based Communication

Confusion corresponds to the agents’ level of familiarity with the environment. Thus, when a
perturbation occurs, the confusion of the group should grow. Accordingly, our communication
protocol is aimed at reducing the groups’ confusion by having agents broadcast confusing transitions.

Our suggested protocol considers two settings.

1. Mandatory broadcast—agents broadcast their most confusing encountered states, i.e.,
states with the highest Jpsi . A message is a tuple consisting of the confusing transitions
< si, a, r, si+1 > observed by the agent. Messages are received by all other agents, and
considered as part of their experience, that is, they are inserted into the agents’ replay buffers
that maintain each agent’s recent transitions. The size of the message is bounded by a
parameter ml that represents the channel’s bandwidth.

2. Emergent communication—this is inspired by recent work on emergent communication
in RL [6, 4]. Each agent p chooses at each time step t a discrete communication symbol mp

t
to broadcast. The individual messages of the N agents are concatenated into a single vector
mt = [m1

t . . .m
N
t ], which is included as an additional observation that all agents receive at

the next time step. In this setting, in which agents learn a joint communication policy, we
distinguish between two sub-cases:
(a) Emergent self-centric communication: Each agent p chooses a communication sym-

bol mp
t that would have minimized its own confusion at time step t− 1.

(b) Emergent group-centric communication: For cases where agents can observe the
confusion level of all other agents at each time step, each agent p is rewarded for
choosing a communication symbol mp

t that minimizes the total confusion of the group
at the next step.

While for the mandatory protocol the meaning of a message is set by the designer, for the emergent
communication protocol agents need to jointly learn the semantic meaning of each message. Thus,
for example, a taxi in Example 1 might broadcast an observation ’At(1,2), Passenger1_InTaxi,
MOVE_UP, expected reward:-1, actual reward: -10’. In contrast, in the emergent protocol case,
agents will jointly learn to effectively broadcast arbitrary symbols using their messaging policies
that are optimized to minimize confusion. In addition, in the case of the emergent communication

5



Figure 2: The communication model has two heads for two different policies. The vector of messages
broadcasted is an additional input to the agent’s LSTM unit as part of the observations

protocols, agents learn two separate policies (implemented via training two separate networks): πe
outputs the action to perform and is trained with the environmental reward, and πm learns which
signal to broadcast and is trained with the intrinsic reward based on the confusion level (see Figure 2).

4 Empirical Evaluation

The objective of our empirical evaluation is to assess the effect collaboration has on the resilience
of a group of agents. Specifically, we measure and compare the total reward of groups of agents in
randomly perturbed environments, where each group implements a different communication protocol.

4.1 Environments

Our dataset consists of three different environments.

1. Multi-taxi: the domain described in Example 1. The environment is episodic, resetting
when all passengers arrive at their destinations. The observation of each taxi is a symbolic
vector which contains raw information about the environment including the taxis’ current
locations and the current passengers’ locations and their destinations. At the beginning
of each episode, the taxis appear at random start locations, while passengers’ source and
destination locations are chosen at random from a set of possible locations. Each taxi
receives a high positive reward for each passenger that is successfully dropped off at her
destination, a small negative reward for each step in the environment, and a high negative
reward when trying to drive through a wall. For each instance, the environment is represented
by a 5× 5 to 8× 8 grid, with 2–3 taxis and 2–3 passengers.

2. Cleanup: An SSD domain suggested by [7] in which agents can maximize their long-term
reward by cooperating and coordinating their behavior. Cells with apples (green tiles)
provide individual positive reward, but are limited in number. Agents can punish each other
with a fining beam which costs 1 and fines the agent hit with 50. The observation of each
agent is a raw image consisting of its surrounding. The dilemma arises due to the adjacent
river that must be cleaned so apples can grow. However, agents cannot harvest any apples
while cleaning. The group therefore needs to learn to jointly keep the river clean.

3. Harvest: Another SSD domain suggested by [7] which is similar to the Cleanup domain. In
this variation there is no river, but apples grow at rate that is proportional to the amount of
nearby apples. Agents therefore need to coordinate the rate and locations from which they
harvest apples.

In order to train our RL agents, we use a separate neural network per agent. For the SSD domain the
agents are implemented using the Distributed Asynchronous Advantage Actor-Critic (A3C) approach
by [11]. For the multi-taxi domains they are implemented using a Deep Q-Network [12]. Our neural
networks’ structure is inspired by the architecture presented by [6] and is depicted in Figure 2. The
network consists of a convolutional layer, fully connected layers, a Long Short Term Memory (LSTM)
recurrent layer [5], and output layers. All networks take raw images as input and output both the
policy (πe, πm) and the value function Vπ .
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4.2 Perturbations

Given an environment M and a perturbation Φ, we measure the perturbation’s magnitude as the sum
of distances between all matching states as suggested by Song et al. [20] and described in Section 2.

We experiment with perturbation bounds of 50, 150 and 200. We introduced three types of perturba-
tions to our environments:

1. Changing the initial state - randomly change the initial configuration of the environment.
This include changing the initial position of taxis and passengers in the multi-taxi domain or
the river location in the Cleanup domain.

2. Introducing obstacles - randomly add non-traversable obstacles (e.g walls) to the map.

3. Reward and resource reallocation - randomly eliminate passengers or apples from the
domain map.

For each initial, unperturbed environment M , and perturbation bound K, we sample perturbed
environments M ′ such that δ(M,M

′
) ≤ K. To generate the set of perturbed environments, single

perturbations are randomly generated and combined with other perturbations of the three types
mentioned above. We bound the magnitude of the combined perturbations by K.

In each experiment, a perturbation frequency tpert sets the number of episodes between perturbations.
Accordingly, agents first train in the original non-perturbed environment for tpert episodes, and then
keep training in subsequent perturbed environments (we do not reset the agents training process after
perturbations).

4.3 Communication Protocols

In our experiments we assume there exists a communication channel that allows agents to broadcast
messages, and compare the following communication protocols.

1. No communication: Each agent interacts with the environment relying only on its own
observations. Agents are not explicitly aware of one another, and do not communicate.

2. Random communication: Agents broadcast random observations from their experience.

3. Social influence: As suggested by [6], agents chooses to broadcast messages that will have
the maximal influence on the immediate behavior of other agents.

4. Mandatory communication: Agents broadcast the top ml most-confusing observations as
described in Section

5. Emergent self-centric communication: Agents broadcast a discrete symbol that would
have minimize their confusion at the previous step, as described in Section

6. Emergent group-centric communication: Agents observe other agents’ current confusion
level and broadcast a discrete symbol trying to minimize the overall confusion of the group
at each step.

The last three policies are our suggested confusion-based protocols and are described in detail in
Section 3.

4.4 Results

To measure the effect perturbations have on a group of agents we measured both the average utility
of the group in the original environment, and the performance at each perturbed environment. We
measure the utility of a group as the total reward achieved by the agents over a certain number of time
steps (which we chose proportional to the amount it takes for the group’s total reward to stabilize in
each environment) and averaged over 10 repeats of the experiment.

Tables 1, 2 and 3 present the average maximal resilience CK- calculated over 10 sampled environ-
ments within K = 50, K = 150, and K = 200 from the original environment. In parenthesis we
indicate the standard deviation.
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Protocol K=50 K=150 K=200
No Communication 0.801 0.450 0.238

Random Observations 0.822 0.242 0.187
Mandatory Communication 0.888 0.55 0.347

Table 1: Average maximal CK-resilience for multi-taxi.

Protocol K=50 K=150 K=200
No Communication 0.73 (0.11) 0.65 (0.04) 0.59 (0.2)

Social Influence 0.79 (0.05) 0.68 (0.02) 0.64 (0.14)
Emergent Global-Centric 0.82 (0.07) 0.8 (0.08) 0.71 (0.08)

Emergent Self-Centric 0.84 (0.12) 0.72 (0.02) 0.61 (0.1)

Table 2: Average maximal CK-resilience for Cleanup.

In order to measure the resilience level under each perturbation bound K for each group, denoted by
CK we use the measurement defined in Definition 2, using the uniform distribution as Ψ, which is
avg(U(M ′))
U(M) .

Due to limitations of our current implementation, we compare for the multi-taxi domain only the no
communication setting against the mandatory communication setting. Agents are trained using DQN.
For the SSD domains we compare the social influence and emergent communication approaches.
Agents are trained using A3C.

(a) (b)

Figure 3: Left: Average utility for K = 200 in the Taxi domain. Right: Average utility for K = 150
over repeated perturbations for Harvest.

Figure 3a shows the learning curves of three groups. Each group consists of DQN agents deployed
to the multi-taxi domain. The groups depicted by the blue, orange and green curves correspond
to groups that do not communicate at all, and groups that use mandatory random and mandatory
confusion-based communication, respectively. It is interesting to see that the protocol that randomly
selects the observations to broadcast achieves in average lower resilience than the no communication
setting. This shows that merely sharing experiences between agents is not sufficient to achieve
resilience. On the other hand, our specific confusion-based approach does lead to significantly
improved resilience, showing the merit of using confusion to determine what information to share.
Thus, we conclude that the confusion based communication protocol contains valuable properties for
achieving high performance in randomly perturbed environments.

Protocol K=50 K=150 K=200
No Communication 0.82 (0.15) 0.68 (0.1) 0.649 (0.13)

Social Influence 0.93 (0.03) 0.71 (0.13) 0.71 (0.17)
Emergent Global-Centric 0.93 (0.06) 0.91 (0.06) 0.85 (0.03)

Emergent Self-Centric 0.91 (0.02) 0.86 (0.09) 0.80 (0.02)

Table 3: Average maximal CK-resilience for Harvest.
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Figure 3b shows the learning curves of the groups implementing the emergent protocols deployed to
the Harvest SSD domain. Results show that the groups that use the confusion-based protocol achieve
higher performance in the perturbed environments.

Table 1 presents the average CK-resilience calculated in the Taxi domain using the mandatory com-
munication protocols described above. Tables 2 and 3 present the average CK-resilience calculated
in the SSD domains using the emergent communication protocols. As can be seen from the results
the confusion based protocols achieves the highest values of CK .

The results presented above show that collaboration, and the use of confusion based communication
in particular, improves group resilience in the presence of perturbations of high magnitude. We
conclude that confusing observations encapsulate valuable information that helps agents learn about
the perturbed environment. In addition, instead of sharing raw observations with each other, agents
can learn to use a communication channel in order to reduce the confusion level of the group.

Our results open many questions for future work. Specifically, we intend to directly compare the
mandatory and emergent communication regimes.

5 Conclusion

We introduced novel formulations to evaluate the resilience of a group of agents based on the group’s
ability to adapt to perturbations in the environment. To the best of our knowledge, this is the first
measurement of group resilience that is relevant to MARL settings. In addition, we suggested a novel
confusion-based communication protocol to promote group resilience. Our evaluation shows that
collaboration via our confusion-based communication protocol improves the group’s resilience over
the examined baselines.

Confusion based communication, as shown in this work, is a promising approach for promoting
collaboration with many extensions. Some examples are to use this logic in pricing information when
trying to estimate the value of information that is broadcast among agents, or to incorporate it in
robotic systems trying to achieve cooperation in unstable environments.

The ability of autonomous agents, individually or as a group, to adapt to changes in the environment
is highly desirable in real-world settings where dynamic environments are the rule, not the exception.
Therefore, if a a group is to reliably pursue its objective function, it should be able to handle
unexpected environmental changes. Obviously, those who have delegated tasks to autonomous agents
stand to benefit from those agents being more likely to succeed. Societal benefit of resilience is thus
clear, assuming the original tasks were of societal benefit themselves.

It is noteworthy that the recent global pandemic perturbed many aspects of the environments in which
we operate. In such cases, people used to certain kinds of collaboration before the pandemic may
have found it easier adjusting to the unfamiliar constraints that were imposed. We believe our results
reflect a quite specific kind of benefit that automated agents can derive from collaborating with one
other. We do note that many usual caveats on AI research apply, for instance, where the original task
itself is not of societal benefit; We leave this for future work and note potential solutions in existing
work on differential privacy or federated learning.
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A Appendix

A.1 General Variation of the CK Definition

In some use-cases, we may have knowledge about the optimal utility that could be achieved in
a certain setting, or even know all the possible perturbed environments (under some perturbation
magnitude). For these scenarios, we give two supplementary definitions. The strongest would not
place any conditions on M

′
other than distance from the original environment M and the least strong:

Definition 7 (Relative to Optimum CK-resilience) Given an MDP M and a bound K ∈ R, we
say that a group of agents α is universally CK-resilient in M if

∀M
′

: δ(M,M
′
) ≤ K =⇒

U(M ′) ≥ CK · U∗(M ′)
where U∗(M ′) = maxπ U(π,M ′)

The second definition is designed for settings where we only know or especially care about the
preserved utility of the group of agents relatively to the non-perturbed environment.

Definition 8 (Relative to Origin CK-resilience) Given an MDP M and a bound K ∈ R, we say
that a group of agents α is universally CK-resilient in M if

∀M
′

: δ(M,M
′
) ≤ K =⇒

U(M ′) ≥ CK · U(M)

A.2 Additional Results

In this section we present results of our methodology in another domain, which we call “apple
picking”. In this domain, agents have to visit as many “apple” states as they can to collect a reward at
each such state. Once all apples have been picked, the episode ends.

The perturbations we experimented with are similar as in section 5: adding obstacles and changing
the possible “apple” locations.

We note that this environment in a way is easier than the original one, as the agents get reward for
even completing part of the task. It is interesting to see in Table-4 that in this setting, where the
objective is less complex, the different group of agents achieve similar resilience levels. However,
confusion-based communication still achieves the highest resilience throughout our experiments.
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Figure 4: Apple Picking domain, Average utility for K = 150

Figure 5: Apple Picking domain, Average utility for K = 50

Table 4: C-resilience values for groups of agents with different communication protocols in the
“apple picking” domain, calculated over 10 experiments.

Communication
Protocol

K=50 K=150 K=200

No communication 0.844 0.418 0.265
Communication of
randomly selected
observations

0.719 0.433 0.262

Confusion based
communication

0.881 0.451 0.327

Table 5: C-resilience values for groups of agents with different communication protocols in the
“apple picking” domain, calculated over 10 experiments.
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