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Abstract

In many real-world applications, an agent may fail to reach its goal due to only1

partial information about its surroundings. At the same time, another helper agent2

may have information that can help with achieving this goal. We introduce Helpful3

Information Shaping (HIS), which is the problem of selecting which information4

to reveal to guarantee that a partially informed agent can achieve its goal. For5

a setting in which the partially informed actor is a planning agent, we provide a6

novel compilation of the HIS problem into a single-agent planning problem. The7

compiled problem encapsulates both the information shaping actions as well as8

inference about what will be possible for the agent to achieve on the basis of shared9

information. In this way, we achieve cooperation by solving this compilation-10

planning problem and can easily formulate different tradeoffs between cost of11

information and the cost of the resulting plan.12

1 Introduction13

In many applications, an agent attempting to reach a goal may have only partial information about its14

surroundings and limited sensors with which to acquire new information. The lack of information may15

cause the agent to fail to each its goal and even when the goal is achievable with more information. In16

a collaborative multi-agent setting, another agent, a helper agent, may possess information that can17

make it possible for the first agent to achieve its goal. The question is, given limited communication,18

what information should the helper agent share with the actor agent in order to help it achieve its19

goal? This is the problem of Helpful Information Shaping (HIS), which deals with determining the20

right information to reveal in order to ensure that the actor agent can succeed.21

HIS is relevant to a variety of applications. One motivating setting is that of an under-water mission22

[6], where is a vessel on the surface has a noisy communication channel with an under-water23

autonomous vehicle (UAV). The controller needs to decide which information to share to help achieve24

the mission objective; e.g., revealing information about obstacles or passages that are invisible to the25

UAV. Assisted-cognition settings [10] provide another motivating scenario. For example, the goal of26

a visually impaired person may be known, say reaching the door to another room, and we need to27

share information to help with this goal. We would like to minimize the information shared, to avoid28

cognitive overload. In educational settings, a teacher might want to make sure a student receives just29

enough information to be able to solve a geometry problem, i.e., without providing the full solution30

but rather requiring the student to deduce some of what is needed to solve the problem.31

In this paper we formalize a two agent HIS setting. One agent, the actor, is a partially informed32

planner that uses its partial information and available sensors to compute a plan to achieve its goal.33

The other agent, the helper, is assumed to have full information about the environment as well as34

knowledge about the actor and it’s goal and relevant information about the kind of approach the35

agent takes to planning and acting. We consider two distinct kinds of actor models. One kind is a36

conservative agent, that only follows a plan if is guaranteed to achieve the goal. A second kind is37

a replanning agent that is willing to make assumptions about missing information in order move38
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Figure 1: Helpful Information Shaping (HIS) environment map. The figures on the top row represent
the actual environment state, with blue arrows representing the robot’s behavior. Occupied cells in
which a robot may get stuck are indicated by flames. Each occupied cell emits a danger signal in
each adjacent cell, depicted as waves. The figures in the bottom row represent the robot’s knowledge
state that corresponds to each state of execution. The green cells are known to be ’free’, while the
question marks indicate possible locations of obstacles.

around in the environment and eventually reach its goal. This second kind of agent updates its beliefs39

in the event an assumption is refuted while acting and replans accordingly. The helper agent can have40

different kinds of objectives. The two we consider are (i) find the minimal amount of information to41

share so that the goal can be achieved, or (ii) find the minimal information to share so that the actor42

can follow a minimum cost plan to the goal.43

As a running example, we consider a robot that is navigating in an environment in order to reach44

a destination. The robot maintains a map in which each cell is marked as ‘free’, in which case the45

cell is traversable, ‘occupied’, in which case the cell is non-traversable, or ‘unknown’, in which case46

the robot doesn’t know whether or not the cell is traversable. Initially, only the walls are marked as47

‘occupied’, while all other cells are marked as ‘unknown’. The map is updated dynamically as the48

robot gains more information.49

For simplicity, the world is static and the value of each cell remains the same throughout execution.50

The robot can move in one of the four cardinal directions, and is assumed to be able to localize itself51

and know which cell it occupies. It has a sensor that allows it to detect when an adjacent cell is52

occupied, but not the direction of the signal. If a robot tries to move into an occupied cell, it may get53

stuck. Therefore, if the sensor indicates the presence of a nearby obstacle while acting it will only54

moves to an adjacent cell if it can infer that this cell is free, and will backtrack otherwise.55

Example 1.1 Figure 1a depicts a simple HIS environment that consists of a single room with a single56

entry point marked by ‘Start’ and a goal destination G. The cells with obstacles (e.g., cells (B, 3))57

are marked by flames that emit signals, depicted as waves (i.e. smoke) in the figure, that indicate58

an obstacle in one (or more) of the adjacent cells. Figure 1c depicts the robot’s initial belief, that59

corresponds to the robot’s initial knowledge about the environment. Since the robot does not sense60

a nearby obstacle it knows that the two adjacent cells are free (the green cells in the figure). If the61

robot is conservative, it will abort execution before moving, since it does not have information about62

a full path to the goal that is guaranteed to succeed. If the robot is a replanning actor, it will compute63

a plan based on assumptions that some cells are free. As shown in Figure 1b and the corresponding64

robot belief in Figure 1d, without additional information, the robot will abort execution of its task65

after examining all possible paths.66

In Figure 2 we show the minimal number of information shaping interventions that are needed to67

guarantee that a replanning agent can achieve its goal. In this case, an optimal solution is for a helper68
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Figure 2: Using HIS to find a minimal
information plan for a replaninng agent.

(a) (b)

(c) (d)

Figure 3: Using HIS to find a minimal
execution plan for a replaninng agent

agent to reveal that cells (A, 4) and (D, 5) are free (the blue cells are those for which the true value69

is revealed). Figure 2c shows the robot’s initial belief. The path that successfully leads the robot to70

it’s goal after the additional information is provided is depicted in Figure 2b and Figure 2d shows the71

robot’s path as well as the information about occupied cells that is acquired during execution.72

Figures 3 depicts the solution that enables the actor to follow the cheapest path of going right from73

the initial state to the wall and then continuing up to the goal. Instead of revealing information about74

two cells, this solution would require revealing the value of three cells (i.e., (D, 1), (E, 1), (E, 3)).75

The path followed by the agent is depicted in blue in figures 3b and 3d. It bears emphasis that even if76

the information revealed enables a cost minimizing path, this does not by itself guarantee that the77

actor will follow that path. The decision of which path to follow depends on the planner used by78

the actor. The guarantee we seek is that if the agent can explore the domain, and can backtrack and79

replan, it will be able to eventually discover the cost minimizing path.80

The problem of HIS is challenging because there may be a large number of possible choices in regard81

to which information to share, and because evaluating the effect of each information shaping option82

may be costly. To find optimal HIS solutions, we provide a compilation to a single planning problem83

that involves both information sharing actions as well as actions in the world and supports finding an84

optimal solution to HIS by a single call to an optimal, classical planner.85

In the remainder of this paper, we provide an overview of related work (Section 2) as well as86

background on planning with partial knowledge (Section 3). We define Helpful information shaping87

(HIS) in Section 4. In Section 5 we present methods we have developed to find optimal information88

shaping solutions. We conclude in Section 6 with a summary of the HIS framework as well as89

possible directions for future investigation.90

2 Related Work91

The idea that information is malleable is not new, and has been investigated in a variety of research92

disciplines including economics [9], business management [7], politics [14], and more. We focus93

on controlling the information of a partially informed planning actor and the effect of additional94

information on the actor’s behavior. Our work is therefore most related to the extensive body of work95

on selective information revelation in multi-agent settings.96

One line of work considers the communication of information in collaborative settings. For example,97

[8] provide a general decision-theoretic mechanism for reasoning about the utility of communicating98

information relevant to an agent’s plans in a multi-agent collaborative setting. Similarly, several99

lines of work [20, 19, 18, 17] consider a multi-agent collaborative setting where communication is100
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limited, and the decision whether to communicate some information considers the gain to effective101

coordination, versus the communication cost. To address this challenge, a unified framework is102

created where communication becomes part of the overall agent decision problem. Specifically, [17]103

consider a distributed mixed human-computer team, where the value of of information held by a104

teammate is assessed by taking into account the costs of a potentially disruptive communication105

action and its effect on performance.106

The information shaping approach we present here considers a setting where a passive observer can107

perform a one-time offline intervention, in which the same information is revealed to all actors in the108

system. The benefit of revealing a certain information item depends on the observer’s objective, and109

is assessed according to a model that describes how actors reason and make decisions about how to110

act. Another distinction from previous works such as [17] is that we do not consider the effect of111

interrupting an agent in order to share information. Instead, our focus is on settings where there may112

not be even a direct interaction with the actors. Instead, information shaping can be used to represent113

either direct manipulations of actors’ knowledge (e.g., manipulating the map used for navigation), or114

indirect placing of informative signals or sensors in the environment. Actors in our model are agnostic115

to the intentions of an observer, and may not even be aware of the offline information shaping process.116

A major challenge in previous work [17, 8] is that the value of information may be expensive to117

compute in general. The key challenge in our setting is due to the size of the information shaping118

task, requiring the use of efficient search techniques for finding optimal solutions.119

Information shaping can also be viewed as a special case of environment design [22], which provides120

a framework for an interested party to seek an optimal way to modify an environment to maximize121

some utility. Among the many ways to instantiate the general model, policy teaching [23, 22] enables122

a system to modify the reward function of a stochastic agent, in order to entice the agent to follow123

specific policies. We focus here on performing design via controlling the information an agent uses124

for planning, rather than by reward shaping, and on using information shaping to ensure that a goal is125

achievable by an agent.126

3 Background127

3.1 Planning Under Partial Observability128

To model the actors, we follow the approach by [3] for contingent planning under partial observability.129

Definition 1 (Planning under partial observability (PPO)) A planning under partial observability130

(PPO) problem is a tuple P = 〈F ,A, I, G,O〉 where F is a set of fluent symbols, A is a set of131

deterministic actions, I is a set of clauses over F-literals defining the initial situation, G is a set of132

F-literals defining the goal condition, and O represents the agent sensor model.133

An action a ∈ A has a set prec(a) of F-literals preconditions, and a set eff (a) of conditional134

effects C → L, where C is a set of F-literals and L is an F-literal. The sensor model O is a set of135

observations o ∈ O represented as pairs (C,L), where C is a set of F-literals, and L is a positive136

fluent indicating that the value of L is observable when C is true. Each observation o = (C,L) can137

be conceived as a sensor on the value of L that is activated when C is true.138

A state s is a truth valuation over the fluents F (‘true’ or ‘false’). For an agent, the value of a fluent139

may be known or unknown. A fluent is hidden if its true value is unknown. A belief b is a non-empty140

collection of states that the agent deems as possible at some point. A formula F holds in b if it141

holds for every state s ∈ b. An action a is applicable in b if the preconditions of a hold in b, and142

the successor belief b
′

is the set of states that result from applying the action a to each state s in b.143

When an observation o = (C,L) is activated, the successor belief is the set of states in b that agree144

on L (i.e., the set of states where fluent L has the sensed value). The initial belief is the set of states145

that satisfy I , and the goal belief are those that satisfy G. A formula is invariant if it is true in each146

possible initial state and remains true in any state reachable from it. A PPO problem is simple if the147

non-unary clauses in I are all invariant, and no hidden fluent appears in the body of a conditional148

effect. We hereon assume our PPO problems are simple.149

A history is a sequence of actions and beliefs h = b0, a0, b1, a1, . . . , bn, an, bn+1, such that action ai150

is applicable in belief bi. The cost of history h, denoted Ca(h) = ΣiC(ai), is the accumulated cost151
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of the performed actions (equivalent to the path length when action cost is uniform). A history is152

complete if the agent performing the actions reaches a goal belief. Each history corresponds to a153

path path = a0, a1, . . . , an, which is the sequence of actions performed by the agent. A solution to a154

PPO problem is a policy π, which is a partial function from beliefs to actions.155

A PPO problem corresponding to the navigating robot example in Section 1 includes fluents rep-156

resenting whether a cell is free (e.g., IsFree(D, 1)), whether the agent is in a location (e.g.,157

AgentAtCell(B, 1)), and whether there is a danger signal in a location (e.g. SignalAtCell(B, 2)).158

Actions represent movements between adjacent cells (e.g. Move(B, 1, C, 1)). The goal is for the159

agent to be in a particular state (e.g., AgentAtCell(E, 4)). The sensor model includes observations160

that specify the robot’s ability to sense a signal in a particular location. For example, the observation161

o = (C = AgentAtCell(B, 1), L = Signal(B, 1)) indicates the robot can sense a signal in cell162

(B, 1) if it is in the cell. Finally, the initial situation includes all fluents that are true at the beginning of163

execution (e.g., AgentAtCell(A, 1)), as well as all the invariant information about the environment.164

For example, IsFree(D, 1) ∨ SignalAtCell(C, 1) indicates the danger signal that can be sensed in165

cell (C, 1) if cell (D, 1) is occupied.166

There are two main approaches to planning with partial information: offline planning and online167

planning [4]. In offline planning, a complete plan tree is generated to account for all the contingencies168

that may arise [13]. This plan tree may grow exponentially in the number of problem variables,169

making it an impractical approach in all but simple problems. In online planning, the agent makes170

local decisions on how to behave next, which can typically be generated much more quickly, but might171

not provide the same guarantees as the offline approach. A variety of offline and online approaches172

have been developed for PPO planning [2, 16, 3, 4, 13, 5, 1, 12, 15]. A common technique for173

online planning is replanning [21], where an agent finds a plan for its current state based on some174

simplification of its planning problem and executes a prefix of the plan until discrepancies between175

the plan and the information acquired during the execution emerge and require replanning.176

4 Helpful Information Shaping177

Helpful information shaping (HIS) focuses on finding information to reveal to a partially informed178

actor so it can achieve its goal. We assume that communication is limited, and that an actor computes179

its own plan by considering all the information it has available and the assumptions it can make about180

missing information.181

Definition 2 A helpful information shaping (HIS) model is a tuple M = 〈R0,∆〉 where:182

• R0 = 〈F ,A, I, G,O〉 is the initial model, and183

• Set ∆ denotes the set of information items that the helper can communicate to the actor.184

We are assuming the helper agent has full knowledge of the the actual world state defined as a185

truth valuation over the fluents F . This means we have one intervention δf ∈ ∆ that corresponds186

to revealing the true value of each fluent f ∈ F . Each intervention may be associated with a187

information cost Cis : M → R+. We overload the notation for a single intervention by using188

Cis(∆) =
∑
δ∈∆ Cis(δ) to denote the total cost of a set ∆ of interventions. Another cost we consider189

is the cost of executing a plan. We let Cminexe (R) represent the minimal cost of a plan to the goal in R190

and C∗exe(R) is the minimal cost under full information. Finally, we let R∆
0 denote the model that191

results from applying the set ∆ ⊆∆ to the initial model R0.192

We consider two objectives. The first objective, demonstrated in Figure 2 and formally defined in193

Equation 1, is to the set of interventions with minimal information cost needed to guarantee that the194

goal is achievable:195

∆∗(M) = arg min
∆⊆∆

(Cis(∆))

s.t. Cminexe (R∆
0 ) <∞

(1)

The second objective, demonstrated in Figure 3 and formally defined in Equation 2, is to find the196

minimal set of interventions that guarantee that a plan with minimal cost under full information is197
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executable by the partially informed actor:198

∆∗(M) = arg min
∆⊆∆

(Cis(∆))

s.t. Cminexe (R∆
0 ) = C∗exe(R0)

(2)

199

The above objectives may be relevant to different settings. In applications in which communication is200

costly, such as the under water mission setting described in Section 1, the helper’s objective may be201

described by Equation 1. In applications in which physical movements are expensive, Equation 2202

may be more suitable.203

5 Finding Optimal Solutions for HIS204

A baseline approach for HIS is to perform a breadth first search (BFS) in the space of sensor205

extensions, computing the actor’s cost to goal at each node (in the case of non-uniform information206

cost, a Dijkstra search is applied instead). The search explores modification sets of increasing size,207

using a closed-list to avoid the computation of pre-computed sets. To find a solution that complies208

with Equation 1 (a solition that minimizes information cost), the search halts if a solution is found,209

or if there are no more nodes to explore, and returns the shortest path (smallest sensor extension210

set) to a node that achieves the optimal value. For solutions that comply with Equation 2 (solutions211

that guarantee a minimum cost plan is executable), the search needs to continue until all possible212

information shaping options are explored. This approach is guaranteed to find an optimal solution,213

but does not scale to large problems. We suggest instead a compilation to classical planning that214

allows finding a solution to a HIS problem with a single call to an off-the-shelf planner.215

5.1 Knowledge Acquisition Compilation (KAC)216

To generate a plan for a partially-informed agent, [3] suggest the K(P) translation that transforms the217

PPO problem into a classical planning problem. This substitutes each literal L in the original problem218

with a pair of fluents KL and K¬L, representing whether L is known to be true or false, respectively219

[1, 16]. Each original action a ∈ A is transformed into an equivalent execution action that replaces the220

use of every literal L (¬L), with its corresponding fluent KL (K¬L). Each observation o = (C,L)221

is translated into two deterministic assumption actions. These allow the solver to compute a plan222

while choosing to make assumptions about unknown variables. For example, the actor can assume223

that a cell is free. Each invariant clause is translated into a set of ramification actions. These actions224

can be used to set the truth value of some variable as new sensing information is collected. For225

example, a ramification action can be activated to infer that a cell is safe when no obstacle signal226

is sensed in an adjacent cell. This representation captures the underlying planning problem at the227

knowledge level, accounting for the exploratory behavior of a partially informed agent. A plan can228

be found using any off-the-shelf classical planner.229

We suggest the KAC translation that takes as input the actor’s PPO description, and the informer’s230

possible information shaping options and creates a single planning problem. Like Bonet and Geffner’s231

K(P) translation [3], the translated problem includes execution actions A′

exe, that represent actual232

behavior in the environment, A′

as assumption actions, that allow the actor’s planner to choose the233

value of variables, and ramification actions A′

ram, that correspond to the invariant information234

that allows the actor to infer new information. The novelty here is that KAC includes knowledge235

acquisition actions A′

ka, modeled as part of the planning problem and that represent the sharing of236

information by the helper (via an ‘acquisition’ of the actor). While the K(P) translation associates237

the same cost to all actions in the compiled problem, KAC includes a cost function, associating a cost238

for each type of action and giving flexibility to the formulation.239

Definition 3 (KAC Translation) Given a HIS problem M = 〈R0,∆〉 and a cost function C ∈240

<+ ∪∞, KAC(M) = 〈F ′, I ′, G′,A′, C′〉 is the fully observable problem where241

• F ′ = {KL,K¬L : L ∈ F}242

• I ′ = {KL : L ∈ I}243
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• G′ = {KL : L ∈ G}244

• A′ = {A′

exe ∪ A
′

as ∪ A
′

ram ∪ A
′

ka} where245

– A′

exe includes all actions a ∈ A, but with each precondition L replaced by KL, and246

each conditional effect C → L replaced by KC → KL and ¬K¬C → ¬K¬L.247

– A′

as = {a(C,L), a(C,¬L)|o = (C,L) ∈ O} where248

∗ prec(a(C,L)) = {KC,¬KL,¬K¬L,L} and eff (a(C,L)) = {KL})249

∗ prec(a(C,¬L)) = {KC,¬KL,¬K¬L,¬L} and eff (a(C,¬L)) = {K¬L}250

– A′

ram = {aram| for invariants ¬C ∨ L in I} where251

∗ prec(aram) = {KC} and252

∗ eff (aram) = {KL}253

– A′

ka = {A
′+
ka ∪ A

′−
ka} where254

∗ A
′+
ka = {a(C,L)|o = (C,L) ∈ Oo} where255

· prec(a(C,L)) = {KC,¬KL,¬K¬L} and eff (a(C,L)) = {KL})256

∗ A
′−
ka = {a(C,¬L)|o = (C,L) ∈ Oo} where257

· prec(a(C,¬L)) = {KC,¬KL,¬K¬L} and eff (a(C,¬L)) = {K¬L}258

• C′(a) =


C′

ex if a ∈ A′

exe

C′

as if a ∈ A′

as

C′

ram if a ∈ A′

ram

C′

ka if a ∈ A′

ka

259

Given a plan π that is a solution to the KAC translation, we let Π
′

exe(π), AS(π) and Π
′

ka(π)260

represent the sequence of execution actions, assumption actions and knowledge acquisition actions in261

π, respectively. We use |Π′

exe(π)|, |Π′

ka(π)| and |AS(π)| to represent the respective sizes of these262

sequences. The cost function C′ dictates the plan that is a solving to the translation.263

In [11] the cost of assumptions is used to guarantee a level of robustness of the generated plan,264

representing the plan’s ability to avoid failure. We use the cost function to support solutions that265

minimize either the execution cost or information cost. In the following, we show how these two266

objectives can be supported for conservative and replanning agents.267

5.2 Finding HIS Solutions for Conservative Agents268

Conservative agents only follow plans that are guaranteed to succeed and do not rely on any as-269

sumptions. To support such agents, we disable the planner’s ability to make assumptions (which is270

equivalent to setting the cost of assumptions C′

as to be infinite). Execution actions are assumed to271

have a uniform cost C′

ex of 1 for all actions. Under the assumption that reasoning is done with no272

computational overheard, we assign zero cost to ramification actions A′

ram, (i.e., C′

ram = 0). The273

cost of knowledge acquisition actions C′

ka is set according to the helper’s objective.274

To comply with the objective of finding a minimal set of information items to reveal to guarantee275

the goal is achievable (Equation 1), we set the cost to be high enough so that a single knowledge276

acquisition action is higher than the cost of all other actions the actor can perform. This will guarantee277

such actions are included in a solution only if they are necessary to accomplish the task. Specifically,278

if C′

ka > |A
′

exe|, then Π
′

ka(π) represents a minimal set that achieves the objective of making sure279

Cminexe (R∆
0 ) <∞. This HIS formulation is well suited for settings in which communication is costly.280

For settings in which movement in the environment is costly, we would instead set the cost of C′

ka281

so that the total cost of acquisition actions is lower than a single execution action. This guarantees282

that a cost minimal plan to the goal is available. Specifically, if C′

ka <
1
|A′

ka|
, the accumulated cost of283

knowledge acquisition actions is smaller than the cost of a single execution action (equal to 1) and284

Cminexe (R
Π

′
ka

0 ) = C∗exe(R0).285
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5.3 Finding HIS Solutions for Replanning Agents286

In contrast to conservative agents, replanning agents are willing to make assumptions about missing287

information to compute plans. Even under the assumptions that backtracking is always possible, a288

replanning actor may fail to reach an achievable goal due to its limited sensors. In Figure 1, even289

though there is a path to the goal, the robot fails because it’s sensor could not detect it. The objective290

of HIS is to automatically find the minimal information that needs to be communicated to the actor to291

guarantee that at least one plan (Equation 1) or a minimal cost plan (Equation 2) is achievable, in292

spite of the actor’s limited sensors.293

The actor’s ability to make assumptions are modeled in the KAC translation via the assumption actions294

A′

as, which set the value of variables during the planning. It is important take such assumptions into295

account since we are considering cases in which communication is costly. This means that if an actor296

can make the correct assumption about some variable, it would be wasteful for the helper to convey297

that information.298

In Example 1.1, an optimal solution in the case of conservative actors that don’t make assumptions is299

to reveal that cells (C, 1), (D, 1), (E, 1), (E, 2) and (E, 3) are free. In the case of replanning actors,300

some of this communication is redundant, since the helper can rely on the actor’s willingness to make301

assumptions and its ability to infer some of this information during execution. In Figure 2, the helper302

knows the actor will be able to infer that cell (C, 1) is free when reaching cell (B, 1) (and sensing no303

danger signal). In contrast, because of the signal in cell (C, 1), the actor has no way to infer that cell304

(D, 1) is safe based only on it’s sensors, requiring the helper to communicate that the cell is free.305

A replanning agent can make assumptions and revise them if they are refuted during execution. Since306

our objective is to find a plan that the actor will be able to follow, we restrict the planner to assumption307

actions that correspond to the actual values of variables. As before, we assign a cost of 1 to execution308

actions and a cost of 0 to ramifications.309

First we consider the case in which the helper is interested in minimizing information cost (Equation310

1). In this case, the cost of assumptions is set such that the maximal total cost of assumptions is311

smaller than the cost of a single action, i.e., C′

as <
1
A′ . To guarantee knowledge acquisition actions312

are applied only if necessary, we assign them with a cost C′

ka s.t. |A′| < C′

ka. This guarantees313

that a single knowledge acquisition action is higher than the cost of the most expensive plan. To314

account for cases in which the helper aims to minimize execution cost (Equation 2), we set the cost315

of assumptions to be negligible. Specifically, we want to guarantee that the maximal accumulated316

cost of assumptions is smaller than the cost of a single knowledge acquisition action. In turn, the317

maximal accumulated cost of information acquisition actions is set to be smaller than the cost of a318

single execution action. Formally, C′

as · |A′| < C
′

ka and C′

ka · |A
′

ka| < C
′

ex = 1.319

6 Conclusions320

We have introduced the problem of helpful information shaping (HIS), which considers a fully321

informed helper agent, who can share some information with a partially informed actor, the helper322

seeking to help the acting agent with achieving its goal. To solve HIS, we suggest the KAC compila-323

tion that represents in a single planning problem both the actor’s planning problem and the helper’s324

ability to share information. We then show how the compilation can account for different objectives325

the helper may have and produce a solution with a single call to an off-the-shelf classical planner.326

There are many ways to extend the HIS framework. First, while our work used a qualitative non-327

deterministic representation of the uncertainty of a world state, it will be interesting to use probabilistic328

models to represent the actor’s belief. Future work could also consider settings where information329

shaping can be applied at execution time, based on actors’ actual progress. It is also interesting to330

consider how our approach can be extended to support reinforcement learning agents, and to support331

multi-agent settings, where the helper agent uses a limited communication channel to support a332

diverse set of actors in the system. This brings about normative questions about how to balance in a333

fair way possibly competing considerations.334
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